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1 Introduction

This document runs through all the steps and gives some extra statistical details regarding copy-
number-aware differential analyses of quantitative sequencing data. We are under the assumption
that copy number variation (CNV) data is available on the same DNA that has been profiled
through some quantitative DNA sequencing assay (e.g. ChIP-seq, MBDCap-seq; we refer to these
collectively as QDNA-seq).

The general idea of ABCD-DNA (Affinity-Based Copy-number-aware Differential analysis of
quantitative DNA sequencing) is that higher (lower) copy number results in higher (lower) read
density, assuming everything else equal (e.g. methylation levels for MBDCap-seq, or enrichment
strength for ChIP-seq assays); this is not new or unexpected. However, the challenge comes in
how to integrate this knowledge into a statistical analysis that is searching for differential regions
of enrichment. Our goal here is to disengtangle changes in the epigenome from changes in the
epigenome. In addition, there are few methods available to do differential analyses between ChIP-
seq sample that allow replication, careful normalization and so on; many approaches are being
actively researched. Borrowing and adapting the analyses and infrastructure used in RNA-seq,
ABCD-DNA addresses both of these challenges. We propose to integrate the CNV information
directly as offsets in a count-based statistical model. An annotated analysis for a comparison using
MBDCap-seq (methylated DNA capture) between LNCaP (prostate cancer) and PrEC (prostate
epithelial) cells is given below.

Further Supplementary information, including R scripts and pre-processed data, can be found
at:
http://imlspenticton.uzh.ch/robinson_lab/ABCD-DNA/

In this document, we go through the details of how the ABCD-DNA analysis was designed. In
Section 5, we discuss the interface that is now available in the Bioconductor Repitools package.

2 Load R package and data

Regardless of QDNA-seq dataset, the starting point is a table of counts for all regions of interest,
across all samples of interest, with corresponding CNV information for each sample. Here, we load
a preprocessed dataset comprising one of the datasets used in the main paper.

Our data is available in unprocessed form from the Gene Expression Omnibus, or in processed
form from the Supplementary website1 as R objects with read densities and CNV across 500 base

1http://imlspenticton.uzh.ch/robinson_lab/ABCD-DNA/
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pair bins genome-wide.
First, we load the necessary packages and the pre-computed R objects:

> library(GenomicRanges)

> library(edgeR)

> load("../Rdata_created/counts.Rdata")

> load("../Rdata_created/orig_regs_gb.Rdata")

In this example, the count table consists of technical replicates of MBDCap-seq for LNCaP,
PrEC and SssI (fully methylated control) DNA:

> head(counts)

LNCaP_MBD2IP_1 LNCaP_MBD2IP_2 PrEC_MBD2IP_1 PrEC_MBD2IP_2

1 2 0 0 1

2 1 0 0 1

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

SssI_Elution_6_MBD2IP_1 SssI_Elution_6_MBD2IP_2

1 6 4

2 6 3

3 0 0

4 2 3

5 3 3

6 0 0

The SssI control is only used here to pre-select the regions of the genome (see below), since it
reflects where the assay actually enriches for methylated DNA. This step is not necessary for other
assays, but some subsetting is recommended if nothing else to reduce the burden of multiple testing
corrections.

To keep track of the regions of the genome for the count table, we have a corresponding GRanges

object, as follows:

> gb

GRanges with 5570057 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [51501, 52000] *

[2] chr1 [52001, 52500] *

[3] chr1 [52501, 53000] *

[4] chr1 [53001, 53500] *

[5] chr1 [53501, 54000] *

[6] chr1 [54001, 54500] *

[7] chr1 [54501, 55000] *

[8] chr1 [55001, 55500] *

[9] chr1 [55501, 56000] *

... ... ... ...

[5570049] chrY [57708501, 57709000] *
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[5570050] chrY [57709001, 57709500] *

[5570051] chrY [57709501, 57710000] *

[5570052] chrY [57710001, 57710500] *

[5570053] chrY [57710501, 57711000] *

[5570054] chrY [57711001, 57711500] *

[5570055] chrY [57711501, 57712000] *

[5570056] chrY [57712001, 57712500] *

[5570057] chrY [57712501, 57713000] *

---

seqlengths:

chr1 chr2 chr3 chr4 chr5 ... chr20 chr21 chr22 chrX chrY

NA NA NA NA NA ... NA NA NA NA NA

As you can see, these are 500bp bins tiled along the genome.
These were pre-computed using the annotationBlocksCounts function in the Repitools2

package. As an alternative starting point, if you have a GRangesList of mapped reads or a set of
BAM files, you can use annotationBlocksCounts to create a table of read densities. In addition,
there are plenty of tools available to count read densities across genomic regions, such as HTSeq-
count3, Rsubread 4 and so on.

In our case, the CNV information originates from Affymetrix SNP 6.0 arrays and can be pre-
processed into a matrix, one each for LNCaP and PrEC cells, and that corresponds to the counts
table. For simplicity, we are only considering regions of the normal PrEC genome with 2 copies,
but this can be easily be extended.

> table(regs)

regs

L=1 P=2 L=2 P=2 L=3 P=2 L=4 P=2 L=5 P=2

16943 273705 1207077 3800068 272264

> length(regs)

[1] 5570057

> length(regs)==length(gb)

[1] TRUE

CNV information (e.g. genotyping arrays, genome sequencing) is segmented and software will
output the genomic ranges and their segmental copy number values. For our analyses, we used the
PICNIC tool5, parsed the segmented copy numbers into a GRanges object and matched it to our
regions of interest (code not shown; see ’preprocess.R’ at the Supplemental web site). Insert your
tool of choice here and parse the segmented copy numbers into a GRanges object, which can be
easily matched to the GRanges object of regions of interest using the findOverlaps function in
the IRanges package.

2http://bioinformatics.oxfordjournals.org/content/26/13/1662.abstract
3http://www-huber.embl.de/users/anders/HTSeq/doc/index.html
4http://www.bioconductor.org/packages/release/bioc/html/Rsubread.html
5http://www.sanger.ac.uk/genetics/CGP/Software/PICNIC/
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3 Normalization

Normalization is here accomplished in two parts: i) sample-specific adjustments for depth and com-
position; ii) adjustments for copy number, which come from the pre-processed CNV information.
These two components need to be integrated together.

3.1 Sample-specific factors

We first take a subset of the data to make it manageable, using a fairly liberal cutoff of regions
that can be reasonably interrogated with MBD-seq:

> rs <- rowSums(counts[,5:6]) # read depth in SssI

> k <- rs>10

> counts <- counts[,1:4]

> grp <- factor( gsub("_[12]","",colnames(counts)), levels=c("PrEC_MBD2IP","LNCaP_MBD2IP"))

> counts <- counts[k,]

> gb <- gb[k,]

> regs <- regs[k]

> dim(counts)

[1] 793838 4

All of the count-based modeling takes place in the edgeR package, which can accept region-
and sample-specific offsets. That is, ABCD-DNA is a procedure for specifying this table of offsets,
where each cell of the matrix corresponds with the count matrix. If a given genomic region is
amplified, it should have a higher value of its offset. Similarly, if a sample is sequenced to a
higher depth, it will also attract a higher offset; of course, the depth offset has the subtlety that
composition of the capture DNA population will have an effect on the expect read count. Overall,
this framework allows full flexibility for different regions and different samples to have different
copy number states. In our example, copy-number offsets are estimated externally using Affymetrix
SNP 6.0, we check that these in fact have a roughly linear impact on the read depth in the QDNA-
seq (aside from the biological changes that occur) and the relative depth offsets are estimated from
the “neutral”, or most prominent state. These offsets are delivered to the generalized linear model
to adjust the statistical testing. The advantage of this strategy is that the read densities are kept
on their original scale, which allows straightforward mean-variance modeling.

To illustrate this analysis, we start with creating a standard DGEList object:

> # calculate standard p-values / CN-aware p-values

> # dataset-specific

> d <- DGEList(counts=counts,group=grp,genes=as.data.frame(gb)[,-c(4:5)])

> d <- calcNormFactors(d)

> d

An object of class "DGEList"

$samples

group lib.size norm.factors

LNCaP_MBD2IP_1 LNCaP_MBD2IP 5205141 1.0061212

LNCaP_MBD2IP_2 LNCaP_MBD2IP 9180957 1.0279797

PrEC_MBD2IP_1 PrEC_MBD2IP 8721579 0.9841434
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PrEC_MBD2IP_2 PrEC_MBD2IP 9037020 0.9824417

$counts

LNCaP_MBD2IP_1 LNCaP_MBD2IP_2 PrEC_MBD2IP_1 PrEC_MBD2IP_2

54 8 10 6 6

55 9 10 7 5

150 2 2 3 2

946 3 7 4 1

970 17 19 7 9

793833 more rows ...

$genes

seqnames start end

54 chr1 78001 78500

55 chr1 78501 79000

150 chr1 126001 126500

946 chr1 524001 524500

970 chr1 536001 536500

793833 more rows ...

The call to calcNormFactors is simply to populate various variables in the object; these will be
modified to give the sample-specific normalization factors.

As mentioned in the main paper, LNCaP is predominantly 4 copies and PrEC is a normal
genome generally with 2 copies. Thus, we treat this ”L=4 P=2” state as a reference point and esti-
mate all the sample-specific factors for this subset of the genome. We calculate these normalization
factors using the regions of lower variability (i.e. higher counts where log-ratios are more precisely
estimated) for just the ”neutral” state. We plot them graphically as M (log-ratio of depth-adjusted
count) versus A (log-average depth-adjusted counts) plots:

> ref <- 1

> nf <- rep(0,ncol(d))

> par(mfrow=c(1,3))

> for(i in 2:ncol(counts)) {

+ tit <- paste(colnames(d)[i], "vs", colnames(d)[ref])

+ map <- maPlot(d$counts[regs=="L=4 P=2",ref], d$counts[regs=="L=4 P=2",i],

+ normalize=TRUE, pch=19, cex=.3, ylim=c(-5,5), main=tit); grid();

+ q <- quantile(map$A[!map$w],.99)

+ nf[i] <- median( map$M[map$A > q] )

+ abline(h=nf[i],col="red",lwd=4)

+ abline(v=q,col="blue")

+ }

> z <- exp(nf)

> z <- z/(prod(z)^(1/length(z)))

> d$samples$norm.factors <- z
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The norm.factors vector in the $samples element now carries the offsets corresponding to
“effective” read depth, which makes the prominent copy number state (i.e. L=4 P=2) the reference
state.

3.2 Region-specific copy-number factors

Now, we need to introduce the copy number offsets. Our assumption is that a doubling of copy
number should result in a double of the average read depth, or more generally that there is a linear
relationship between copy number estimates and read depth in the QDNA-seq assays. This is,
of course, only an approximation, since many regions may change in their enrichment levels. In
addition, depending on your platform used for copy number detection, there may be attenuation
issues (i.e. non-linearities). In addition, many microarray-based segmentation algorithms operate
on the log scale; these should be exponentiated to the linear scale for introduction through ABCD-
DNA. In the main manuscript, we demonstrated an approximate linear relationship across 3 distinct
QDNA-seq datasets for the CNV-typed cell lines LNCaP and PrEC. We repeat this exercise here
to illustrate the mechanics on 1 of the LNCaP and PrEC replicates.

> layout(matrix(c(1:4,rep(5,4)),2,4,byrow=TRUE))

> cn <- c("L=2 P=2","L=3 P=2","L=4 P=2","L=5 P=2")

> f.by.cn <- rep(NA,length(cn))

> els <- d$samples$lib.size*d$samples$norm.factors # effective library size

> ref <- 3

> sam <- 2

> for(i in 1:length(cn)) {

+ kk <- regs==cn[i]

+ map <- maPlot(d$counts[kk,ref]/els[ref], d$counts[kk,sam]/els[sam],

+ normalize=FALSE, pch=19, cex=.3, ylim=c(-5,5)); grid();

+ top <- max(100,round(.01*sum(!map$w)))

+ o <- order(-map$A)[1:top]

+ q <- max(min(map$A[o]),max(map$A[map$w]))

+ abline(v=q,col="blue");

+ f.by.cn[i] <- median(map$M[map$A>q])

+ abline(h=f.by.cn[i],col="red",lwd=4);

+ title(cn[i])

+ }

> f <- exp(f.by.cn)

> plot(2:5,f/f[3],pch=19,ylab="Relative Depth by CNV",type="b",

+ xlab="",xaxs="i",xlim=c(1.65,5.35))
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We would recommend an analysis like to this to confirm that changes in copy number are
reflected in changes in QDNA-seq data before continuing. If there is no obvious linear (or other)
relationship, then it points to confirming other aspects of the experiment – is the same source of
DNA used for CNV-typing and QDNA-seq? are the CNV estimates on the right scale? did the
ChIP/MBD enrichment or sequencing work properly? And, so on.

Of course, in many real-world applications, the segmented copy number state may be non-
integer (e.g. mixtures of cell populations). Before applying these checks, modifications to the above
integer-based plot will need to be made (e.g. grouping into copy number groups). Regardless, an
association between DNA copy and QDNA-seq density should be established before proceeding.

In any case, we can now create a matrix of offsets for our dataset. Because we have normalized
4 copies for LNCaP to 2 copies for PrEC, we are basically treating these as neutral (and that there
relative read densities don’t deviate too much on the average – of course, there will be biological
differences). Therefore, we are effectively treating 4 copies in LNCaP as on par with 2 copies in
PrEC; we need to specify this in our

> m <- matrix(rep(c(1,0,1),c(2,4,2)),nrow=2,byrow=TRUE)

> cnL <- as.numeric(gsub("L=","",gsub(" P=2","",regs)))

> cn <- cbind(cnL/2,2) %*% m

> cn[34901:34910,]

[,1] [,2] [,3] [,4]

[1,] 2.0 2.0 2 2

[2,] 2.0 2.0 2 2

[3,] 2.0 2.0 2 2

[4,] 2.5 2.5 2 2

[5,] 2.5 2.5 2 2

[6,] 2.5 2.5 2 2

[7,] 2.5 2.5 2 2

[8,] 2.5 2.5 2 2

[9,] 2.5 2.5 2 2

[10,] 2.5 2.5 2 2

Here, the m matrix is just to expand the single columns of CNV estimates to the 2 columns each
(technical replicates) for the read densities.
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4 Generalized Linear Model fitting with offsets

Next, we introduce generalized linear modeling. The commands below illustrate how you might
do a standard differential analysis on a QDNA-seq data table using edgeR:

> # Fit the NB GLMs

> design <- model.matrix(~grp)

> rownames(design) <- colnames(d)

> design

(Intercept) grpLNCaP_MBD2IP

LNCaP_MBD2IP_1 1 1

LNCaP_MBD2IP_2 1 1

PrEC_MBD2IP_1 1 0

PrEC_MBD2IP_2 1 0

attr(,"assign")

[1] 0 1

attr(,"contrasts")

attr(,"contrasts")$grp

[1] "contr.treatment"

> fit <- glmFit(d, design, dispersion=0.05)

> lrt <- glmLRT(fit, coef=2)

First, we define a design matrix design, which in this case just represents a simple 2-group
comparison; more complicated designs are supported. We can fit models for each gene using edgeR’s
glmFit and do a likelihood ratio test using glmLRT (coef=2 for changes between LNCaP and PrEC
MBD-seq given the design matrix above). For simplicity, we have hard-coded the dispersion to be
.05, since we do not have proper biological replicates. However, these are cell lines, so we expect a
low baseline level of variation. See the edgeR user’s guide6 and the GLM manuscript7 for further
details.

Next, we need to modify the above analysis to deliver a matching matrix of offsets to go along
with the matrix of counts. From the cn matrix we created before and the effective library sizes we
calculated, it is easy to put these two pieces together, as follows:

> o <- outer( rep(1,nrow(d)), getOffset(d)) + log(cn)

> dim(o)

[1] 793838 4

> dim(d)

[1] 793838 4

6http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
7http://www.ncbi.nlm.nih.gov/pubmed/22287627
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> fitadj <- glmFit(d, design, offset=o, dispersion=.05)

> lrtadj <- glmLRT(fitadj, coef=2)

As above, we follow the steps above after introducing the offsets. We can use the facilities
within edgeR to come up with CNV-aware lists of differentials regions.

> topTags(lrtadj)

Coefficient: grpLNCaP_MBD2IP

seqnames start end logFC logCPM LR

5387202 chr20 46565501 46566000 -7.913104 2.287681 136.0044

675197 chr2 90960501 90961000 -7.752314 2.537993 127.7426

5387201 chr20 46565001 46565500 -7.668903 2.044691 124.9497

3429276 chr10 41678001 41678500 -6.478397 2.240175 122.1347

5385985 chr20 45957001 45957500 -7.571460 1.947775 120.6371

4769509 chr16 44943501 44944000 -5.104627 3.350697 119.0972

282727 chr1 141480001 141480500 -5.296381 2.729242 118.4303

5569397 chrY 57382501 57383000 -9.844084 2.118213 118.0796

282726 chr1 141479501 141480000 -5.073060 2.878753 117.2169

1471934 chr4 48817501 48818000 -5.665856 2.382306 115.5838

PValue FDR

5387202 1.990896e-31 1.580449e-25

675197 1.277871e-29 5.072114e-24

5387201 5.220091e-29 1.381302e-23

3429276 2.156841e-28 4.280455e-23

5385985 4.588262e-28 7.284673e-23

4769509 9.972101e-28 1.319372e-22

282727 1.395734e-27 1.582838e-22

5569397 1.665654e-27 1.652824e-22

282726 2.573337e-27 2.269792e-22

1471934 5.862854e-27 4.654157e-22

Further downstream analyses could then be applied.

5 Using the wrapper software in the Repitools package

The above R code and description illustrated the “guts” of how the ABCD-DNA analysis was
designed and invoked. In this Section, we describe the software available in the Repitools Bio-
conductor package for doing these same steps.

First, we load the package and collect all the information needed: the count table, GRanges
object of regions, a design matrix, the copy number calls, and the set of regions deemed to be from
the neutral state. From these, we can construct a QdnaData object, as follows:

> library(Repitools)

> qd <- QdnaData(counts=counts, regions=gb, design=design,

+ cnv.offsets=cn, neutral=(regs=="L=4 P=2"))

As above, the first step is to calculate the sample-specific factors from the neutral state:
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> qd <- getSampleOffsets(qd,ref=1)

> qd$DGEList$samples

group lib.size norm.factors

LNCaP_MBD2IP_1 1 5205141 1.4151518

LNCaP_MBD2IP_2 1 9180957 0.8849364

PrEC_MBD2IP_1 1 8721579 0.9094978

PrEC_MBD2IP_2 1 9037020 0.8779772

The normalization factors are then stored in the $DGEList$samples element of the QdnaData

object. Note that you can use a different reference sample, and it has only a small impact on the
normalization factors.

> print(getSampleOffsets(qd,ref=3,force=TRUE)$DGEList$samples)

group lib.size norm.factors

LNCaP_MBD2IP_1 1 5205141 1.4203819

LNCaP_MBD2IP_2 1 9180957 0.8657193

PrEC_MBD2IP_1 1 8721579 0.9128591

PrEC_MBD2IP_2 1 9037020 0.8908694

As before, we can create a plot of the relative change in qDNA-seq across some pre-defined
CNV states. Note here that we need to give indices of two samples to compare: 3-PrEC, 2-LNCaP.

> plotQdnaByCN(qd,cnv.group=regs,idx.ref=3,idx.sam=2)

In the case that the scale of the CNV offsets needs to be changed after inspection of the above
plot, there is an accessory function named setCNVOffsets to attach CNV offsets to the QdnaData

object.
Lastly, when we are happy that the offsets reflect a change in read density, we can combine

the sample-specific offsets with the CNV offsets, fit the generalized linear model and calculate a
likelihood ratio test for the difference of interest. This can be accomplished in a single step, as
follows:

> f <- abcdDNA(qd, dispersion=.05, coef=2)

> topTags(f)
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Coefficient: grpLNCaP_MBD2IP

seqnames start end logFC logCPM LR

5387202 chr20 46565501 46566000 -7.913104 2.287681 136.0044

675197 chr2 90960501 90961000 -7.752314 2.537993 127.7426

5387201 chr20 46565001 46565500 -7.668903 2.044691 124.9497

3429276 chr10 41678001 41678500 -6.478397 2.240175 122.1347

5385985 chr20 45957001 45957500 -7.571460 1.947775 120.6371

4769509 chr16 44943501 44944000 -5.104627 3.350697 119.0972

282727 chr1 141480001 141480500 -5.296381 2.729242 118.4303

5569397 chrY 57382501 57383000 -9.844084 2.118213 118.0796

282726 chr1 141479501 141480000 -5.073060 2.878753 117.2169

1471934 chr4 48817501 48818000 -5.665856 2.382306 115.5838

PValue FDR

5387202 1.990896e-31 1.580449e-25

675197 1.277871e-29 5.072114e-24

5387201 5.220091e-29 1.381302e-23

3429276 2.156841e-28 4.280455e-23

5385985 4.588262e-28 7.284673e-23

4769509 9.972101e-28 1.319372e-22

282727 1.395734e-27 1.582838e-22

5569397 1.665654e-27 1.652824e-22

282726 2.573337e-27 2.269792e-22

1471934 5.862854e-27 4.654157e-22

This is the same table as before (i.e. f is the likelihood-ratio test output).

6 Environment

This document was created using the following R version and associated packages:

> sessionInfo()

R version 2.15.1 (2012-06-22)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_CA.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_CA.UTF-8 LC_COLLATE=en_CA.UTF-8

[5] LC_MONETARY=en_CA.UTF-8 LC_MESSAGES=en_CA.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_CA.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] Repitools_1.3.4 edgeR_2.99.4

[3] limma_3.13.16 GenomicRanges_1.9.47
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[5] IRanges_1.15.32 BiocGenerics_0.3.1

loaded via a namespace (and not attached):

[1] Biostrings_2.25.9 BSgenome_1.25.6 stats4_2.15.1

[4] tools_2.15.1
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